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Dehaene et al. (Reports, 30 May 2008, p. 1217) argued that native speakers of Mundurucu, a
language without a linguistic numerical system, inherently represent numerical values as a
logarithmically spaced spatial continuum. However, their data do not rule out the alternative
conclusion that Mundurucu speakers encode numbers linearly with scalar variability and
psychologically construct space-number mappings by analogy.

TheMundurucu language bears an unusual
linguistic phenomenon: The language in-
cludes number words only for the num-

bers one to five, whereas numerical values greater
than five are labeled with approximate quantifiers
like “some” or “many” (1). Consequently, native
speakers of Mundurucu present a rare opportunity
to study the nature of human numerical concepts
in the absence of a robust verbal numerical sys-
tem. Dehaene et al. (2) tested Mundurucu- and
English-speaking participants on the number-line
estimation task developed by Siegler and col-
leagues (3, 4). In (2), participants positioned
numerical values, presented either as nonsymbolic
values (dot arrays or tones) or as symbolic, spoken
number words, on a line anchored at both ends
with fixed numerical values. Both groups po-
sitioned the numerical values ordinally, from
small to large, along the length of the line. English
speakers positioned the symbolic number words
at linear intervals, but they positioned most of the
nonsymbolic numerical values at logarithmically
spaced intervals. In contrast, Mundurucu speakers
positioned both the nonsymbolic and symbolic
numerical values logarithmically. The authors
thus concluded that a linear numerical code is
unique to cultures that engage in formal education
and that space-number mappings like those
reported for Western societies (5–7) are culturally
universal. Here, we offer an alternative account
for each of these conclusions.

Dehaene et al. (2) tested Mundurucu and
English speakers’ numerical performance against
the predictions of a precisely linear numerical code
(Fig. 1A) and a logarithmic numerical code (Fig.
1B). Based on goodness of fit, the authors con-
cluded that, unlike English speakers, Mundurucu
speakers psychologically encode both symbolic
and nonsymbolic numbers logarithmically. How-

ever, a third possibility was not tested: the pos-
sibility that Mundurucu speakers psychologically
encode numbers linearly with scalar variability
(Fig. 1C) (8).

The logarithmic code (Fig. 1B) and the linear-
scalar code (Fig. 1C) predict similar outcomes in
numerical performance. Both codes predict that
smaller numbers are easier to distinguish than
larger numbers. Both codes also predict that the
midpoint between two numerical anchors is at the
geometric mean rather than the arithmetic mean.
Thus, Dehaene et al.’s finding that theMundurucu
indicate that the “middle of the interval 1 through
10 is 3 or 4, not 5 or 6” (2) is consistent with either
code. Finally, both codes predict responses on the
number-line task that conform to a logarithmic
function over and above a precisely linear func-
tion. A logarithmic behavioral response function
would emerge from a logarithmic code because of
the compressed scaling of numbers in psycholog-
ical space. Under a linear-scalar code, a logarith-
mic response function would emerge from noise
that increases proportionally with number, com-
bined with a ratio comparison process between
the anchor and intermediate probe values.

Unfortunately, the behavioral predictions from
the logarithmic and linear-scalar codes are vir-
tually impossible to distinguish from the subjec-
tive scaling data obtained by Dehaene et al. (2)
and previous studies (3, 4) that made similar
claims (9, 10). In fact, some have argued that the
only class of experimental data that can dis-
ambiguate the underlying nature of approximate
numerical representations is one derived from
arithmetic operations (8, 9, 11).

As in previous studies that employed the same
subjective scaling paradigm (3, 4), Dehaene et al.’s
report actually contrasts an approximate numer-
ical code (either a logarithmic code or a linear code
with scalar variability) with an exact numerical
code (a precisely linear code). Their findings are
consistent with previous research on Mundurucu
speakers (1) that showed that both small sym-
bolic numbers and nonsymbolic numerosities are
represented approximately. The data are not in-
formative as to which approximate numerical code
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Fig. 1. The three hypothetical psychological
codes underlying numerical representation. A
precise linear code (A) posits equal spacing
between values on the subjective number line
and little variability. This code yields an exact
mapping between objective and subjective
number and thus allows one to appreciate that
99 and 100 differ by the same amount as 9 and
10. Under the logarithmic code (B), numerical
values are psychologically compressed logarith-
mically with a constant amount of noise. Under
this system, numerical representations become
increasingly less distinct as objective number
increases because they become closer together
in psychological space. The linear numerical
code with scalar variability (C) represents
numerical values with equal psychological
distances between adjacent values, and the
amount of noise in the numerical representa-
tion increases proportionally with its value. Like
the logarithmic code, the linear-scalar code
predicts that confusion between neighboring
values increases with magnitude, not because
of the subjective spacing of the values but
because of the increased variability with which
each value is represented. Whereas the precise-
ly linear code (A) represents objective numbers
precisely, the logarithmic (B) and linear-with-
scalar variability (C) codes represent numbers
approximately.
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underlies nonsymbolic numerical judgments: log-
arithmic or linear with scalar variability. In this
sense, the question of “log or linear?” remains
unanswered.

Dehaene et al. (2) also reported that non-
literateMundurucu speakers represent numbers on
a spatial continuum. Such a finding would indeed
be remarkable given that a psychological mapping
between numbers and space has never been
demonstrated in a nonliterate human or nonverbal
animal. Previous work has shown that educated
adults map numbers onto a one-dimensional spa-
tial continuum that is strongly influenced by the
culturally defined direction of reading (5–7). For
example, when required to make a parity judg-
ment, adults who read from left to right are faster
at responding with their left hand to small values
but, with their right hand to large values sug-
gesting that the mapping of numbers onto space is
defined by reading direction (5).

A critical feature of previously demonstrated
spatial-numeric mapping effects is that the spatial
property of participants’ numerical responses
emerged implicitly—that is, under circumstances
in which a space-to-number mapping was not
overtly required. In contrast, Dehaene et al. (2)
presented subjects with the overtly spatial task of
positioning numbers on a line between two nu-
merical anchors. Under these conditions, the spa-
tial property of participants’ numerical responses
may be only superficially similar to the number-
space mapping evidenced in literate adults.

Spatial responses in the number-line estima-
tion task need not reflect an inherent space-number
mapping. Humans are masters of analogy, even
early in development. For example, by 3 years of
age, children can map the concepts “daddy,”
“mommy,” and “baby” onto a large, a medium,
and a small flower pot (12). Yet, we would not
conclude from this finding that children’s underly-
ing psychological representation of a family is
fundamentally mapped to three different-sized
flower pots. Similarly, adult humans are skilled at
mapping between unidimensional properties. For
example, adults can adjust the loudness of a
sound, the length of a line, or the size of a nu-
merical value to match the brightness of a light
(13). However, the ability to map between these
dimensions does not imply that the psychological
foundation of brightness perception is loudness,
length, or number. Instead, mappings between
dimensions that all have something in common
can be accomplished analogically, in this case
using the property of unidimensionality. Thus, the
results of Dehaene et al. provide evidence that
Mundurucu speakers can map between the uni-
dimensional properties of length and number, but
this is not evidence that Mundurucu number rep-
resentations are deeply, fundamentally, or intui-
tively spatial.

In short, Dehaene et al.’s (1, 2) extraordinary
studies of the Mundurucu mind offer a provoc-
ative set of hypotheses regarding the universal
underlying nature of human numerical represen-

tation. However, there is still room for debate as
to whether a linear numerical continuum is strictly
a cultural invention and whether the mind in-
herently maps numbers onto space.
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